3D L.A.S.A.R. orthotics tutorial

Overview of the adjustment options for lower limb orthoses and their effects on the body statics and gait pattern
Introduction/
table of contents
Introduction

The 3D L.A.S.A.R. orthotics tutorial shows the basic set-up and adjustment options to optimize orthosis alignment during fitting. Depending on the indication, a large number of the adjustment options can be immediately applied. In particular, the functional or structural leg length should always be considered for each patient.

For better illustration, the representations are deliberately “exaggerated”, and the implications for the musculoskeletal system have been simplified. For this reason, the view of the upper limb has been omitted. During the examination, however, the upper body inclination is also taken into account. The dimensions refer to the 2D L.A.S.A.R. posture mode (vertical, red load line) and are based on the average values that correspond to the posture of healthy individuals. In principle, the scale of these values should be reached or deliberately deviated from for therapeutic reasons.

For the static adjustment of the orthosis alignment, the distances between the load line and the reference points of the knee joint are in most cases decisive. In practice, a distance of 15 mm between the load line and reference point has proved useful for adjustments in the sagittal plane. This value is very close to the physiological comparison value. Following the static alignment, the focus during the dynamic fitting is on whether the desired knee movement is achieved in the stance phase or whether the alignment may have to be readjusted.

A compromise often has to be made due to the individual’s pathology. To do so, a detailed clinical examination focusing on joint status, muscle status and sensitivity is required to assess and apply the results of the statics analysis.
Mean statics values of healthy persons (study of 2017)*

- ~ 15 mm acromion centre
- ~ 20 mm knee centre of rotation according to Nietert**
- ~ 10 mm greater trochanter
- ~ 60 mm Malleolus lateralis
- ~ 20 mm knee centre
- ~ 15 mm ankle centre

** Compromise knee rotation according to Nietert: approx. 2 cm above the medial tibial plateau 60%/40% in the a/p direction.
Table of contents

Leg length compensation/heel height 06

 01 | Adjustment of leg length compensation and heel height ... 07

Sagittal .. 10

 02 | Adjustment of the upper ankle joint angle in the sagittal plane 11
 03 | Adjustment of the knee joint angle in the sagittal plane ... 16

Frontal .. 18

 04 | Adjustment of the knee angle in the frontal plane ... 19
 05 | Adjustment of the foot position in the frontal plane ... 21

Overview ... 23
Leg length compensation/heel height
01 | Adjustment of leg length compensation and heel height

Initial situation

Possible main causes

Proposed design characteristics and design

Adjustment option

Scoliotic malposition

Leg length discrepancy (right)

Full-sole leg length compensation in or under the shoe

Set leg length compensation in such a way that the spine is straight and the body centreline runs through the cervical vertebra C7

Knee joint load in the sagittal plane must be checked
01 | Adjustment of leg length compensation and heel height

Initial situation
- Load line is behind the knee centre of rotation

Possible main causes
- Leg length discrepancy (left)

Proposed design characteristics and design
- Full-sole leg length compensation in or under the shoe

Adjustment option
- Set leg length compensation in such a way that the load line in physiological terms (~15 mm) is in front of the knee joint

Shape of the spine and body centreline must be checked
Load line is too far in front of the knee centre of rotation; heel does not have floor contact

Pes equinus

Heel lift added to shoe

Set heel height in such a way that the load line in physiological terms (~ 15 mm) is in front of the knee joint

Shape of the spine and body centreline must be checked
Sagittal
02 | Adjustment of the upper ankle joint angle in the sagittal plane

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
</table>
| Load line is behind the knee centre of rotation | Insufficiency of the calf muscles | Ankle-foot orthosis
- Frontal support element
- Soft heel
- Forefoot with resistance | Set dorsal stop in such a way that the load line in physiological terms (~ 15 mm) is in front of the knee joint |
02 | Adjustment of the upper ankle joint angle in the sagittal plane

- **Initial situation**: Leg not capable of bearing load
- **Possible main causes**: Minor insufficiency of the knee extensors
- **Proposed design characteristics and design**: Ankle-foot orthosis with:
 - Ventral support element
 - Soft heel
 - Forefoot with resistance
- **Adjustment option**: Set dorsal stop in such a way that the load line is 20 to 35 mm in front of the knee centre of rotation
02 | Adjustment of the upper ankle joint angle in the sagittal plane

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Leg not capable of bearing load**
- **Insufficiency of the knee extensors**
- **Knee-ankle-foot orthosis**
 - Ventral support on the thigh
 - Ventral and dorsal support on the lower leg
 - Free motion knee joint, set to the posterior
 - Soft heel
 - Possibly forefoot with resistance

3D L.A.S.A.R. orthotics tutorial 13
02 | Adjustment of the upper ankle joint angle in the sagittal plane

- Leg not capable of bearing load
- Insufficiency of the extensor chain

Initial situation

Possible main causes

Proposed design characteristics and design

- Knee-ankle-foot orthosis
 - Dorsal support on the thigh
 - Ventral support on the lower leg
 - Foot with heel support
 - Locked knee joint, E-MAG Active or C-Brace

Adjustment option

The knee angle has already been corrected. Set dorsal stop in such a way that the load line in physiological terms is in front of the knee centre of rotation. A physiological alignment is indicated in connection with the C-Brace. If necessary, the load line must be further advanced in order to achieve the necessary stabilisation of the knee.
<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
</table>
| Load line is far in front of the knee centre of rotation | Insufficiency of the calf muscles | Ankle-foot orthosis
- Ventral support element
- Stiff heel
- Forefoot with little resistance | Set knee angle in such a way that the load line in physiological terms (~ 15 mm) is in front of the knee joint |
03 | Adjustment of the knee joint angle in the sagittal plane

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
</table>
| ![Leg not capable of bearing load](image1) | ![Insufficiency of the extensor chain](image2) | ![Knee-ankle-foot orthosis](image3)
- Dorsal support on the thigh
- Ventral support on the lower leg
- Foot with heel support
- Locked knee joint, E-MAG Active or C-Brace | ![Set knee angle in such a way that the load line in physiological terms (~ 15 mm) is in front of the knee joint](image4) |
03 | Adjustment of the knee joint angle in the sagittal plane

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
</table>
| Knee joint is hyperextended, load line is far in front of the knee centre of rotation | Insufficiency of the knee extensors | Knee-ankle-foot orthosis
• Ventral support on the thigh
• Dorsal support on the lower leg
• Soft heel
• Free-motion knee joint (pushed back if necessary) | Set knee angle in such a way that the load line is 40 to 60 mm in front of the knee centre of rotation |
Frontal
04 | Adjustment of the knee angle in the frontal plane

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
</table>
| Load line is medially next to the knee centre | Genu varum | Knee orthosis or knee-ankle-foot orthosis
- Valgus 3-point principle | Correct knee axis until the load line in physiological terms (~ 20 mm) is laterally next to the knee centre |
Load line is far laterally next to the knee centre

Possible main causes

Genu valgum

Proposed design characteristics and design

Knee orthosis or knee-ankle-foot orthosis

- Varus 3-point principle

Adjustment option

Correct knee axis until the load line in physiological terms (~ 20 mm) is laterally next to the knee centre

04 | Adjustment of the knee angle in the frontal plane
05 | Adjustment of the foot position in the frontal plane

Initial situation

Possible main causes

Proposed design characteristics and design

Adjustment option

Load line is medially next to the knee centre, knee axis cannot be corrected or has already undergone maximum correction

Genu varum

Lateral wedge

Set lateral wedge in such a way that the load line in physiological terms (~ 20 mm) is laterally next to the knee centre
Load line is far laterally next to the knee centre, knee axis cannot be corrected or has already undergone maximum correction.

Genu varum

Medial wedge

Set medial wedge in such a way that the load line in physiological terms (~ 20 mm) is laterally next to the knee centre.

Initial situation

Possible main causes

Proposed design characteristics and design

Adjustment option
Overview
3.1.2.2 Ausgang

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 14

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 15

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 16

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial situation</td>
<td>Possible main causes</td>
<td>Proposed design characteristics and design</td>
<td>Adjustment option</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
</tbody>
</table>

Page 17

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
</table>

Page 19

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
</table>

Page 20

<table>
<thead>
<tr>
<th>Initial situation</th>
<th>Possible main causes</th>
<th>Proposed design characteristics and design</th>
<th>Adjustment option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial situation</td>
<td>Possible main causes</td>
<td>Proposed design characteristics and design</td>
<td>Adjustment option</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 21

Page 22